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Abstract

This paper describes a method for free vibration analysis of rectangular plates with any thicknesses, which range
from thin, moderately thick to very thick plates. It utilises admissible functions comprising the Chebyshev polynomials
multiplied by a boundary function. The analysis is based on a linear, small-strain, three-dimensional elasticity theory.
The proposed technique yields very accurate natural frequencies and mode shapes of rectangular plates with arbitrary
boundary conditions. A very simple and general programme has been compiled for the purpose. For a plate with
geometric symmetry, the vibration modes can be classified into symmetric and antisymmetric ones in that direction. In
such a case, the computational cost can be greatly reduced while maintaining the same level of accuracy. Convergence
studies and comparison have been carried out taking square plates with four simply-supported edges as examples. It is
shown that the present method enables rapid convergence, stable numerical operation and very high computational
accuracy. Parametric investigations on the vibration behaviour of rectangular plates with four clamped edges have also
been performed in detail, with respect to different thickness-side ratios, aspect ratios and Poisson’s ratios. These results
may serve as benchmark solutions for validating approximate two-dimensional theories and new computational
techniques in future.
© 2002 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Rectangular plates are commonly used structural components in aerospace, mechanical, nuclear,
marine, and structural engineering. In some cases, the plates have to carry dynamic loads, and therefore a
thorough understanding of their vibration characteristics is essential especially for designers. Despite the
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practical importance of elastic vibration solution of thick plate structures, closed-form, three-dimensional
(3-D) elasticity solutions are limited only to rectangular plates with four simply-supported edges (Srinivas
et al., 1970; Wittrick, 1987). In most cases, approximate numerical methods and/or analytical models have
to be used.

A close scrutiny of the references on dynamic analysis of rectangular plates reveals that to date, most
investigations were carried out based on two-dimensional theories, such as the classical plate theory (CPT)
(Leissa, 1973), the first-order shear deformable plate theory (FSDPT) (Mindlin et al., 1956; Cheung and
Zhou, 2000), and the high-order shear deformable plate theory (HSDPT) (Lim et al., 1998a,b). The two-
dimensional theories reduce the dimensions of the plate problem from three to two by making certain
hypotheses on the stress and strain in the thickness direction. These assumptions greatly simplify the
formulation and solution in both analytical and computational methods, but they also introduce errors at
the same time. For example, simplifications such as neglecting the transverse normal stress (Lim, 1999) are
inherently erroneous. Since 3-D vibration analysis on the basis of linear, small-strain elasticity theory does
not rely on any hypotheses involving the kinematics of deformation, such analysis not only provides re-
alistic results but also brings out physical insights, which cannot otherwise be predicted by the two-
dimensional analysis. Attempts have been made for 3-D vibration analysis of rectangular plates with
general boundary conditions in the recent three decades. Cheung and Chakrabarti (1972) used the finite
layer method to study the vibration of thick rectangular plates with general boundary conditions.
Hutchinson and Zillimer (1983) and Fromme and Leissa (1970) used the series solution method to analyse
the free vibration of a completely free parallelepiped. Malik and Bert (1998) and Liew and Teo (1999) used
the differential quadrature (DQ) method to analyse the vibration characteristics of rectangular plates.
Leissa and Zhang (1983) used simple algebraic polynomials and Liew et al. (1993, 1994, 1995) used or-
thogonal polynomials as admissible functions in the Ritz method to analyse such plates. In such work, the
Ritz method shows some special advantages such as high accuracy, small computational cost and easy
coding. However, the improvement in efficiency depends greatly on the choice of admissible functions.
Various authors have reported on applications of the Ritz method to 3-D vibration analysis of structural
components of other shapes (Lim et al., 1998c; Liew et al., 1998; Leissa and Kang, 1999; Leissa and So,
1995; So and Leissa, 1998) using simple algebraic polynomials and orthogonally generated polynomials as
admissible functions. Recently, the authors (Cheung and Zhou, 2002; Zhou et al., 2002) analysed the 3-D
vibration of triangular plates and tori with circular cross-section by using Chebyshev polynomials as the
admissible functions in the Ritz method. High accuracy, stable computation and rapid convergence have
been shown.

In this paper, Chebyshev polynomials multiplied by a boundary function are chosen to be the admissible
functions for the analysis of 3-D vibration of rectangular plates of any thickness. The boundary function is
chosen to satisfy the essential geometric boundary conditions of the plate, but it takes no account of the
stress boundary conditions. For plates with geometric symmetry, the vibration modes can be further
classified as symmetric and antisymmetric ones in that particular direction. In such a case, each of the
categories can be separately determined and thus it results in a smaller set of eigenvalue equations while
maintaining the same level of accuracy. Square plates with four simply-supported edges are taken as ex-
amples to show the convergence and accuracy of the present method. Rectangular plates with four clamped
edges are then studied in detail and the numerical results are given in a tabulated form.

2. Mathematical formulation
The geometric configuration of a homogeneous isotropic rectangular plate is shown in Fig. 1. The plate

has a length a, a width b and a uniform thickness 7. The plate geometry and dimensions are defined with
respect to a Cartesian coordinate system (x, y,z), the origin of which is at the centre of the plate and the axes
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Fig. 1. Geometry, dimensions and coordinates of a rectangular plate with uniform thickness.

are parallel to the edges of the plate. The corresponding displacement components at a generic point are u, v
and w in the x, y and z directions, respectively.
The linear elastic strain energy ¥ for a rectangular plate can be written in integral form as

E a2 b/2 t/2 V/l2 /13
V:4/ / / ( ! +Az+—>dzdydx M
2(04v) Joapp Jopp Jop N1 =20 2
where
Aj = eg+eyten; Ay=ei + 8;, +ed; A= 3;, +e + 8)2,_7 (2)

E is the Young’s modulus and v is the Poisson’ ratio. ¢;(i,j =x,y,z) are the strain components in the
Cartesian coordinates for small deformation, which are given as

b= g =0 Y
XX ax7 Yy ay7 7z 627 (3)
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The kinetic energy T of the plate can be written as

a2 b/2 t/2 Fo 2 0 2 0 2
o u v w
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where p is the mass density per unit volume.

For a plate undergoing free vibration, its periodic displacement components can be expressed in terms of
the displacement amplitude functions as follows

iof, iwt,

u(‘x7y)Z7 t) = U('x7y’ Z)e ) v(‘x7y7Z7 t) = V(x7y’ Z)e ’ W(x7y7 Z’ t) = W(x7y’ Z)ei(/)[ (5)

where @ denotes the natural frequency of the plate and i = v/ —1.
For simplicity and convenience in mathematical formulation, the following non-dimensional parameters
are introduced

E=2x/a; n=2/b; (=2t (6)

The maximum energy functional I1 of the plate is defined as

II = Vmax - Tmax (7)
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where
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Each of the displacement amplitude functions U(&,n,{); V(&, 1, () and W (&, n, () is written, respectively, in
the form of triplicate series of Chebyshev polynomials multiplied by a boundary function which ensures
that the displacement component satisfies the essential geometric boundary conditions of the plate, i.e.

Ve = REN Y S APORMALO):
PEn =EENS S S B @R )P (10)
WEnD) = B ST S S Gy B OB MEQ)

where P (y) (s=1,2,3,...57=¢&n,{) is the one-dimensional sth Chebyshev polynomial which can be
written in terms of cosine functions as follows

P,(y) = cos[(s — 1) arccos(y)]; (s=1,2,3,...) (11)

Note that F,(¢,n); F,(¢,n) and F, (&, n) are the boundary functions, respectively, corresponding to the
displacement amplitude functions U(&,n,{); V(&,n,{) and W (&, n,{), which can be written as

E‘;(fﬂ ’7) = f;il (5)](;32(7])» (5 =u,v, W) (12)

The boundary function components f} (6 = u;v;w,i = 1;2) corresponding to different boundary conditions
are given in Table 1.

It should be noted that using the Chebyshev polynomial series as the admissible functions has two
distinct advantages (Fox and Parker, 1968). One is that P(y) (s =1,2,3,...) is a set of complete and
orthogonal series in the interval [—1,1]. This ensures that the three duplicate series P;(&)P;(17)Pc()
(i,j,k,=1,2,3,...) is a complete and orthogonal set in the plate region. Therefore, more rapid convergence
and better stability in the numerical computation can be accomplished compared with other polynomial
series. The other is that the Chebyshev polynomial and its derivatives can be expressed in simple and
uniform form, which reduces the coding effort. The first five terms of the Chebyshev polynomials are shown
in Fig. 2.
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Table 1

Boundary functions for different boundary conditions
Boundary condition 19 119 £u(©) fi(n) f2(n) fa(n)
F-F 1 1 1 1 1 1
F-S 1 1-¢ 1-¢ 1—9y 1 -9
S-F 1 1+¢ 14+¢ 147 1 I+7
S-S 1 1-¢& 1-& 1—n? 1 1—n?
F-C 1-¢ 1-¢ 1-¢ 1—9y 1—n -y
C-F 1+¢ 1+¢ 1+¢ 149 I+n l+n
S-C 1-¢ 1-¢ 1-¢& 1—n? 1—n 1—n?
C-S 14¢ 1-& 1-& e 1474 1—n?
c-C 1-& 1-¢& 1-¢& 11— 1—n? 1—p?

Legend for boundary conditions: 1. The first letter refers to the edge at £ = —1 or y = —1 whereas the second letter refers to that at

¢=1orn=1.2.F, free edge; S, simply-supported edge; C, clamped edge.
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Fig. 2. The first five terms of the Chebyshev polynomials £, (y)(s = 1,2, 3,4, 5).

Substituting Eq. (10) into Eq. (7) and minimizing the functional IT with respect to the coefficients of the
admissible functions, i.e.

o _ o om . on
aAijk_ ’ aBlmn_ ’ acpqr

=0 (/;k Lmnpyqgr=1,23..) (13)

leads to the following governing eigenvalue equation in matrix form

K] K] K] M) O 0 {4} {0}
Kol Kol (Kl |-Q 0 [M,] 0 {B} p =4 {0} (14)
K]" [Kow]" [Ki] 0 0 [My) {C} {0}

in which Q = wa+/p/E, [K;;] and [M;] (i,j = u,v,w) are the stiffness sub-matrices and the diagonal mass
sub-matrices, respectively. The column vectors {4}, {B} and {C} contain unknown coefficients expressed in
the following forms
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The elements of the stiffness sub-matrices [K;;] and mass sub-matrices [M;] (i,j = u,v,w) are given by
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Table 2

The Chebyshev polynomials corresponding to different mode categories
Geometric Symmetric modes Antisymmetric modes
symmetry U v W U v W
x-direction i=2,4,6,... 1=1,3,5,... p=1375.. i=1,3,5... 1=2,46,... p=2,4,6,...
y-direction j=13,5... m=246,... qg=13,5,.. j=2,4,6,... m=1,35,... q=2,4,6,...
z-direction k=1,3,5 n=1,375,... r=2,4,6,... k=2,4,6,... n=246,... r=1,375...

Solving the eigenvalue Eq. (14) yields the frequency parameters Q2. The mode shape corresponding to
each eigenvalue may be obtained by back-substitution of the eigenvalues, one by one, in the usual
manner.

It is well known that the Chebyshev polynomial P,(y) is symmetric for s = 1, 3,5, ... and antisymmetric

fors =2,4,6,.... From Table 1, one can find that the boundary functions f; (¢) (6 = u, v, w) are symmetric
for a plate with the same support conditions at ¢ =1 and ¢ = —1. The boundary functions f7(n)
(0 =u,v,w) are symmetric for a plate with the same support conditions at y =1 and = —1. This

means that for a plate with geometric symmetry, its vibration modes may be classified into symmetric
modes and antisymmetric modes. These two separate categories of modes can be separately determined,
resulting in a smaller set of eigenvalue equations while maintaining the same level of accuracy. First
and foremost, the rectangular plates considered here have uniform thicknesses, which are invariably
symmetric about the mid-plane. Therefore the vibration modes of a plate can be divided into at least
two categories: symmetric modes (S) and antisymmetric modes (A) about the coordinate {. Furthermore if
a plate has symmetric boundary supports only in the & (or the #) direction, then its vibration modes can
be divided into four distinct categories: AA, AS, SA and SS, in which the first capital letter refers to the
type of vibration modes in the ¢ (or the 5) direction and the second refers to that in the (-direction.
Similarly if a plate has symmetric boundary supports in both ¢ and # directions, then its vibration modes
can be divided into eight distinct categories: AAA, AAS, ASA, ASS, SAA, SAS, SSA and SSS, in which
the first, second and third capital letters refer, respectively, to the type of vibration modes in the &, 5
and (-directions. The Chebyshev polynomials corresponding to different mode categories are given in
Table 2.

3. Convergence study and comparison

As it is well known, the Ritz method can provide accurate solutions. However, its efficiency depends
greatly on the choice of global admissible functions. The natural frequencies obtained by the Ritz method
converge as upper bounds to the exact values. These upper bound estimates could be improved by in-
creasing the number of terms of admissible functions in the computation and hence solution of any ac-
curacy can be obtained in theory. However, a practical limit to the number of terms used always
exists because of the limited speed, the capacity and the numerical accuracy of computers. In the 3-D vi-
bration analysis of an elastic body in particular, numerical instability may occur with a great number of
terms of admissible functions, especially when triplicate series are used. Therefore, the validity of a nu-
merical method often hinges upon the convergence rate, the numerical stability and the accuracy of the
method.

Square plates (i.e. aspect ratio A = 1) with four simply-supported edges are taken as an example for the
convergence studies. Three different thickness-side ratios y = 0.01; 0.2; 0.5 are considered, which corres-
pond, respectively, to thin, moderately thick and very thick plates. The Poisson’s ratio v = 0.3 is used in
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the study. All the computations were performed in double precision (16 significant figures) and piecewise
Gaussian quadrature was used numerically to evaluate the integrals in Eq. (17). To facilitate comparison,
the non-dimensional frequency parameters are expressed as

Table 3

Square plates with four simply-supported edges: convergence of frequency parameters A4 for the SSA modes
Terms in X, Y, Z Al Az A3 A4 AS A(, A7 Ag Ag A][) All A12
t/b=10.01
8x8x1 22128 11.048 11.048 19.856 28.640 28.640 37.397 37.397 54.836 54.839 54.839 63.521
8x8x2 1.9993 9.9826 9.9826 17.944 25883 25.883 33.800 33.800 49.569 49.571 49.571 57.424
9x9x1 22128 11.048 11.048 19.856 28.640 28.640 37.397 37.397 54.836 54.836 54.836 63.519
9x9x2 1.9993 9.9826 9.9826 17.944 25883 25.883 33.800 33.800 49.569 49.569 49.569 57.422
10 x 10 x 3 1.9993 9.9826 9.9826 17.944 25883 25.883 33.800 33.800 49.569 49.569 49.569 57.422
t/b=102
6x6x2 1.7760 6.6959 6.6959 10.182 13.015 13.015 15454 15454 16.953 18.354 19.300 19.300
6x6x3 1.7758 6.6868 6.6868 10.153 12957 12957 15361 15361 16948 18.324 19.297 19.297
Tx7Tx2 1.7760 6.6959 6.6959 10.182 13.014 13.014 15454 15454 16.953 18.354 19.300 19.300
Tx7x3 1.7758 6.6868 6.6868 10.153 12956 12956 15.361 15361 16.948 18.324 19.297 19.297
8x8x4 1.7758 6.6868 6.6868 10.153 12956 12956 15.361 15361 16.948 18.324 19.297 19.297
t/b=10.5
6x6x4 1.2590 3.1958 3.5431 3.5431 4.0770 4.8817 4.8817 49353 6.0230 6.0230 6.1195 6.5400
6Xx6x5 1.2590 3.1958 3.5431 3.5431 4.0770 4.8817 4.8817 4.9353 6.0230 6.0230 6.1195 6.5399
Tx7x4 1.2590 3.1958 3.5431 3.5431 4.0770 4.8817 4.8817 49353 6.0229 6.0229 6.1195 6.5400
Tx7x5 1.2590 3.1958 3.5431 3.5431 4.0770 4.8817 4.8817 4.9353 6.0228 6.0228 6.1195 6.5399
8x8x6 1.2590 3.1958 3.5431 3.5431 4.0770 4.8817 4.8817 4.9353 6.0228 6.0228 6.1195 6.5399

Table 4

Square plates with four simply-supported edges: convergence of freauency parameters 4 for the SSS modes
Terms in X, Y, Z Al Az A3 A4 A5 AG A7 Ag Ag AIU All AIZ
t/b=0.01
Tx7x1 92.255 15594 206.29 206.29 276.76 332.63 332.63 348.67 348.67 380.38 380.38 461.28
Tx7Tx2 92.255 15594 206.29 206.29 276.76 332.63 332.63 348.66 348.66 380.38 380.38 461.28
8x8x1 92.255 15594 206.29 206.29 276.76 332.63 332.63 348.67 348.67 380.38 380.38 461.27
8x8x2 92.255 15594 206.29 206.29 276.76 332.63 332.63 348.66 348.66 380.38 380.38 461.27
9%x9x3 92.255 15594 260.29 206.29 276.76 332.63 332.63 348.66 348.66 380.38 380.38 461.27
t/b=0.2
6x6x2 4.6127 7.7465 10.314 10.314 13.838 16.632 16.632 16.679 16.679 19.020 19.020 21.010
6x6x3 4.6127 7.7465 10.314 10.314 13.838 16.632 16.632 16.676 16.676 19.020 19.020 20.985
Tx7Tx2 4.6127 7.7465 10.314 10.314 13.838 16.632 16.632 16.679 16.679 19.019 19.019 21.010
Tx7Tx3 4.6127 7.7465 10.314 10.314 13.838 16.632 16.632 16.676 16.676 19.019 19.019 20.985
8x8 x4 4.6127 7.7465 10.314 10.314 13.838 16.632 16.632 16.676 16.676 19.019 19.019 20.985
t/b=0.5
6x6x4 1.8451 2.9325 4.1258 4.1258 4.5772 4.5772 4.6142 5.5353 5.5354 5.5457 6.4278 6.4278
6x6x5 1.8451 2.9325 4.1258 4.1258 4.5772 4.5772 4.6142 5.5353 5.5353 5.5457 6.4278 6.4278
Tx7x4 1.8451 2.9325 4.1258 4.1258 4.5772 4.5772 4.6142 5.5353 5.5354 5.5457 6.4275 6.4275
Tx7Tx5 1.8451 2.9325 4.1258 4.1258 4.5772 4.5772 4.6142 5.5353 5.5353 5.5457 6.4275 6.4275
8x8x6 1.8451 2.9325 4.1258 4.1258 4.5772 4.5772 4.6142 5.5353 5.5353 5.5457 6.4275 6.4275
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b wb?

where D = Ef*/[12(1 — v?)] is the flexural rigidity of the plate.

Tables 3 and 4 give the rate of convergence of the first 12 frequency parameters 4; (i = 1,2,...,12) for
the SSA and SSS modes up to five significant figures, respectively. It is seen that the convergence rate is very
rapid. The frequency parameters monotonically decrease and approach the exact values with the increase in
the number of terms of admissible functions. The convergence patterns are also found to be similar for all
of the mode categories. In general, with the increase in plate thickness, more terms in the thickness direction
are needed compared with the other directions. The minimum numbers of terms from which results of the
first 12 frequency parameters for each mode category are accurate to five significant figures are summarized
in Table 5.

The first eight frequency parameters for simply-supported square plates with four different thickness-side
ratio t/b = 0.001, 0.1, 0.2, 0.5 computed using the present method are given in Table 6 and compared with
other published solutions. Note that ¢/b = 0.001 corresponds to a very thin plate; ¢/b6 = 0.1 and ¢/b = 0.2
correspond to moderately thick plates whereas ¢/b = 0.5 corresponds to a very thick plate. Good agreement
has been observed for all cases ranging from very thin to very thick cases. It should be pointed out that the
present method possesses rather good stability in numerical computation. The case of a very thin square

Table 5
Square plates with four simply-supported edges: minimum number of terms required to give the first 12 frequency parameters con-
vergent to five significant figures

t/b Mode category
AAA AAS ASA (SAA) ASS (SAS) SSA SSS

0.01 10 x 10 x 2 8§x 8x2 10x 10 x 2 8§x 8x2 I9x9Ix2 8§x8x2

0.2 8§ x 8 x4 8§x8x3 8x8x4 8§x8x3 Tx7x%x3 Tx7Tx3

0.5 6x6x4 TxTx5 7Tx7Tx5 7Tx7Tx5 TxTx5 7Tx7Tx5
Table 6
Square plates with four simply-supported edges: comparison of the first eight frequency parameters 4

t/b Solution method Ay Ay As Ay As Ag Aq Ag

0.001  Classical theory (Leissa, 1973) 2.0 5.0 5.0 8.0 10.0 10.0 13.0 13.0

Present 3-D solutions 1.9972  4.9999 49999 7.9996  9.9995 9.9995 13.000 13.000
0.1 Mindlin theory (Mindlin et al., 1956) 1.9311 4.6048 4.6048 7.0637 8.6049  8.6049

Higher-order theory (Lim et al., 1998a,b,c)  1.9317 4.6088 4.6088 6.5233  6.5233 7.0731 8.6189 8.6189
3-D exact solutions (Srinivas et al., 1970) 1.9342  4.6222 4.6222 - - 7.1030 8.6617 8.6617
3-D Ritz solutions (Leissa and Zhang, 1983) 1.9342 4.6222 4.6222 6.5234  6.5234 7.1030 8.6617 8.6617
3-D DQ solutions (Malik and Bert, 1998) 1.9342  4.6250 4.6250 6.5234  6.5234 7.1064 8.6932 8.6932
Present 3-D solutions 1.9342  4.6222 4.6222 6.5234  6.5234 7.1030 8.6617 8.6617

0.2 Mindlin theory (Mindlin et al., 1956) 1.7659 - - 3.8576 3.8576 - 5.5729  6.5809
3-D exact solutions (Srinivas et al., 1970) 1.7557 - - 3.8991 3.8991 4.6128 5.6527 -
3-D Ritz solutions (Leissa and Zhang, 1983) 1.7558 3.2617 3.2617 3.8991 3.8991 4.6128 5.6524 6.5234
3-D DQ solutions (Malik and Bert, 1998) 1.7558 3.2617 3.2617 3.8999  3.8999 4.6127 5.6533 6.5236
Present 3-D solutions 1.7558 3.2617 3.2617 3.8991 3.8991 4.6128 5.6524 6.5234

0.5 Higher-order theory (Lim et al., 1998a,b,c)  1.2451 1.3047 1.3047 1.8451 23079 2.3079 2.6094 2.6094
3-D exact solutions (Srinivas et al., 1970) 1.2590 - - 1.8451 - - - -
3-D Ritz solutions (Leissa and Zhang, 1983) 1.2590 1.3047 1.3047 1.8451 23312 2.3312 2.6094 2.6094
Present 3-D solutions 1.2590 1.3047 1.3047 1.8451  2.3312 2.3312 2.6094 2.6094
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plate with the thickness-side ratio y = 0.001 is actually a stringent test case for 3-D vibration analysis. This
case was solved using 13 x 13 x 3 terms of admissible functions.

4. Numerical results

In this section, the proposed 3-D Ritz formulation is applied to investigate the free vibration of rect-
angular plates with four clamped edges. Three different aspect ratios a/b = 1.0; 1.5; 2.0 and nine different

Table 7
Rectangular plates with four clamped edges: the first 12 frequency parameters 4 for the AAA mode
a/b t/b A4 4> 43 A4 4s A6 47 Ay A9 Ayo Vi A1z
1.0 0.1 88943 17.261 17.418 24.101 28.084 28.186 33.488 33.622 39.994 40.063 41.573 44.425
0.2 64152 11.294 11383 15.100 17.133 17.146 17937 18.895 20.054 20.070 21.069  21.326
0.3 4.8478 8.2132 8.2215 8.7918 9.5887 10.784 11.461 11.660 12.076 12.229 12.626  13.841
0.4 3.8570 5.5137 6.0598 6.4370  6.5764 7.8148 79542 8.3465 8.6294 9.3686  9.3772  9.5791
0.5 3.1918 3.9554 4.4868 5.2705 53190 59382  6.0465 6.5991 6.7743  7.0482  7.4649  7.6149
1.5 0.1 68456 10924 15910 16.877 19.021 23.830 23954 27.049 29.507 29.922 31.643 33.427
0.2 5.1303 7.7435 10.511 11.227 12.350 15.043 15104 16.538 17.533 17923 18.154 18.286
0.3 3.9510 5.8168 7.6403 8.1925 8.4206 89264 9.0018 9.6942 10.718 10.766  11.033  11.427
04 3.1746  4.6152 5.1625 5.6170  6.0637 63111  6.4375 6.9620 7.3547 7.7731 7.9235 8.3143
0.5 2.6411 3.6441 3.8040 4.0795 4.6358 4.9639 52507 54895 5.7218 58958  6.0275  6.4018
20 0.1 6.1753 8.4480 12.063 15432 16.641 17.171 19988  21.869 23.725 26.676  27.531  28.055
0.2 4.6734 6.2182 84875 10.221 11.165 11.286 12931 14.071 15.018 16.325 17.079 17.125
03 3.6125 4.7582 63560 7.4300 8.1771  8.1991 8.3126 8.7190 9.0213  9.3469  9.9351 10.127
0.4 29076 3.8143  5.0156 5.0570  5.4257 5.6613 59393 63780 6.4203 6.5744 6.8284  7.2817
0.5 24211 3.1697 3.5399 3.8759 4.0973 4.1706 4.7687 4.8905 5.0307 5.2565 5.3124  5.8538
Table 8
Rectangular plates with four clamped edges: the first 12 frequency parameters 4 for the AAS mode
a/b t/b A A, A3 Ay As 4 4; Ag Ay Ao ! A1
1.0 0.1 14870 18.248 26.671 27.378 30.661 36.434 36.704 39.851 39.992 41918 44491 48.492
0.2 74369 9.1323 13338 13.679 15.317 17.815 18208 19.912 19.953 20.604 22.034 23.214
0.3 49591  6.0847 8.8924 9.0962 10.155 10.788 11.643 12.645 12.994 13.016 13.308 13.517
0.4 3.7200 45534  6.6691  6.6719 7.0594 74614 8.1010 8.1187 89616 9.0949  9.4532  9.4775
0.5 29764  3.6275 4.8151 53348 55114 57480 5.8885 6.0125 63132  6.6670 7.0874  7.4504
1.5 0.1 12.654 15477 19.195 24380 26496 27.192 30.025 31.619 35.198 35469 37.966 39.157
0.2 6.3317  7.7445 9.5977 12175 13.242 13594 14943 15.772 17310 17.714 18.762  19.153
0.3 42234 51628 6.3962 8.0677 8.8143 9.0568 9.7692 10.347 10.810 11.255 11.810 11.895
0.4 3.1688 3.8685 4.7923 59273 6.5203 6.7573 6.7981 7.0788  7.4934  7.8409 7.9279 8.1577
0.5 2.5358 3.0888 3.8240 4.4439 4.8258 51794 53240 54597 55756 5.7936 5.8585  6.1055
20 0.1 11.801 14.298 15.807 20.326 21.688 26.249 26.706 27.634  28.210 31.934 32.733  33.635
0.2 5.9082  7.1522  7.9069 10.159 10.838 13.122 13.346 13.809 14.068 15.934 16.189 16.774
0.3 3.9425 47684 52710 6.7575 7.2067 8.7419 8.8700 9.1783  9.2857 10.211  10.409  10.737
0.4 29588 3.5751 3.9509 5.0372 53721 6.4558 6.4833  6.6339 6.7972 6.8536 7.2312 7.3179
0.5 23681  2.8579  3.1567 39593  4.2465 4.5964 47614 5.0947 52673 53795 54566 5.5947
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Table 9
Rectangular plates with four clamped edges: the first 12 frequency parameters 4 for the ASA mode
a/b t/b A A, A3 A4 A5 Ag 4, Asg Ay 4y Ay Aiy
1.0 0.1 63380 12,695 15484 20281 22.548 26.697 28.583  30.458 33.989 37.300 38.853  38.903
0.2 4.7696 8.6944 10.242  13.009 14.193 16.329 17475 17.646 18.412 19.336  20.086  20.869
0.3 3.6693 6.4306 7.4360 8.4982 9.3728 10.001 10.157 11.135 11.669 12283 12.470 12.970
0.4 29403 5.0315  5.1989 59299  6.5907 7.2505 74646 79476  8.5000 8.8718 9.1616  9.3100
0.5 2.4389 3.6541 4.1836  4.8226 49139 5.5814 5.9639  6.3963  6.4659 6.7606  7.1618  7.3133
1.5 01 38215 8.4956 11.008 14.548 14.922 19.932 21.311 22314 24.066 26.521 28.405 30.269
0.2 3.1127 6.2532  7.6838 9.8539 10.102  12.929 13.501 14.212 15.074 16.492 17.057 17.447
0.3 25185 47770 57309 7.2612  7.4144 8.0017 9.3502  9.5918 9.8274 10.049 10.280  10.730
0.4 20785 3.8215  4.5230 4.7970  5.7079 5.8478 6.3835  6.6315 7.1770  7.3205  7.3769  7.6628
0.5 1.7552 3.1281  3.3293 37593  4.6695 4.7017 48010 4.9460 53684 55829 59527  6.1599
20 0.1 29688 5.6437  9.6946 10.451 12.422  14.630 15.609 19.758 20.134 20.892 22.435 24.605
0.2 24821 44315 7.0704 7.3306 8.5899 10.025 10.517 12.888  13.122 13259 14.161  15.537
0.3 2.0475 3.5088  5.3803 54792  6.3877 7.4021 7.7282  7.8162  9.1569  9.3387  9.5097  9.5652
0.4 1.7124  2.8649 42922 43326 4.6360 5.0461 5.7663 59761 6.0683 6.3842  6.7248  6.9331
0.5 1.4593 24062  3.1193 35632 3.6101 4.1375 42893 47133 48082 49581 5.0119 5.1910
Table 10
Rectangular plates with four clamped edges: the first 12 frequency parameters A for the ASS mode
a/b t/b 4 4y 43 n As 46 47 Ag Ay Ayo An A1
1.0 0.1 12518 20.695 25.026 30.126  33.190 33.723  36.437 40.386 43.056 43.892 46.091 48.164
0.2 6.2722 10.347 12502  15.003 16430 16.787 18.034 19.994 21.126 21.509 22.795 23.184
0.3 4.1871  6.8953  8.2895 9.8007 10.422 11.104 11.546 11983 12.639 12.888 13.393  13.593
0.4 3.1425  5.1645 6.1051 6.6470 7.2777  7.6737 7.9083 82749  8.5055 8.8403  8.9307 9.1656
0.5 2.5145  4.1096 4.5195 4.8977 54006 5.5063 6.0697 6.2325 6.3937 6.6995 6.7274  6.7770
1.5 0.1 9.6411 19.576 20.858 24.161 25.023 28.929 31.576 32.977 35463 36.179 37.481 38.897
0.2 48269 9.7911 10.424 12.003 12.491 14424 15710 16.481 17.588 17.904 18.499 19.144
0.3 3.2210  6.5256 69317  7.8605 8.2727  9.5098 10.227 10.761 10.954 11.481 11.726  11.960
0.4 24173  4.8889  5.1558 5.6427 6.0866 6.8330 6.8611  7.3885 74826 7.6914 7.7622  8.1861
0.5 1.9345 39008 3.9683 4.2511 4.6249 49010 5.1983 5.2761 55410 5.6087 5.8211 5.9534
20 0.1 8.4139 16.730 19.647 21.400 22.612 24872 27.609 28.616 30.150 32.798 33.188  34.449
0.2 42104 83625 9.8198 10.682 11.297 12.398 13.756 14.130 15.037 16.390 16.485 17.170
0.3 2.8087 5.5607 6.5401 7.0883  7.5001 8.1834 9.0243  9.0850  9.9231 10.622  10.899  10.914
0.4 2.1074  4.1452  4.8918 52515 5.5616 59313 6.2171 6.5362 6.9608  7.1655 7.3042  7.5142
0.5 1.6864 3.2735 3.8681 4.0724 4.2686 4.3803 4.7099 4.8552 4.9372 51035 53593 5.4383

thickness-side ratios varying from ¢/b = 0.1 to ¢/b = 0.5 with an increment of 0.1 are considered. Tables 7—
14 show the first 12 frequency parameters 4 of different mode categories. In the computation, 11 x 11 x 6
terms of admissible functions for each displacement function were used. It is shown that for plates with the
same thickness-side ratio ¢/b, the natural frequency decreases with increase in the aspect ratio a/b.
Moreover, observing and comparing the results in these tables, one can find that for thick plates, the
natural frequencies of the symmetric modes in the thickness direction are close to those of the antisym-
metric modes in the same direction. However for thin plates, the natural frequencies of the symmetric
modes in the thickness direction are clearly higher than those of the antisymmetric modes. The same



6350 D. Zhou et al. | International Journal of Solids and Structures 39 (2002) 6339-6353

Table 11
Rectangular plates with four clamped edges: the first 12 frequency parameters 4 for the SAA mode
a/b t/b 4 Ay A3 Ay As 4 4; Ag Ay Ao ! A1

1.0 0.1 6.3389 12.695 15484 20.281 22.548  26.697 28.583 30.458 33.989 37300 38.853  38.903
0.2 4.7696 8.6944 10.242  13.009 14.193 16329 17475 17.646 18.412 19.336  20.086  20.869
0.3  3.6693 6.4306  7.4360 8.4982  9.3728 10.001 10.157 11.135 11.669 12.283 12470 12.970
0.4 29403 5.0315  5.1989 59299  6.5907 7.2505 7.4646  7.9476  8.5000 8.8718 9.1616  9.3100
0.5 2.4389 3.6541 41836  4.8226 4.9139 5.5814 5.9639  6.3963  6.4659  6.7606  7.1618  7.3133

1.5 0.1 5.7835 8.5918 13.721 15.118 17.223  20.300 21.253  26.421 26.756  27.725 28.089  31.303
0.2 4.3926 6.2835  9.4132 10.023 11.301  13.133  13.613 16.173 16.611 17.095 17.130 17.487
0.3 3.3910 4.7885  6.9690  7.2792  8.2044 8.3494 8.9329 9.4514 9.7946  9.9359 10.608 11.541
0.4 2.7224 3.8289  5.0175 5.4903  5.6094 5.8358 6.3280 6.5633  7.0853  7.4001 7.6136  7.9812
0.5 2.2611 3.1763  3.5376  4.0536  4.4957 4.7120 4.8025 5.2628 53419 59956 6.0764  6.1900

20 0.1 5.6157 7.1234 10.111 14255 14997 16.158 18.449 19.194 21.755 24.653 25.872  26.328
0.2 4.2736 5.3324  7.2847 97901  9.9485 10.670 12.042 12.602 13.929 15569 16.118 16.183
0.3 3.2987 4.1109 55170  7.2243  7.2508 7.7601 8.2913 85668 8.7340  9.1129  9.3034  9.6136
0.4 2.6470 3.3079 43969 49731  5.2724 5.6830 5.7781 59326 6.0891 6.2828  6.8205 7.1084
0.5 2.1979 27555 3.4885  3.6434  3.7517 4.2926 4.5365 47094 4.7383  5.0314 53710 5.5243

Table 12
Rectangular plates with four clamped edges: the first 12 frequency parameters A for the SAS mode
a/b t/b 4 4, 45 44 4s 46 47 4g 4y Ao A1 A1

1.0 0.1 12518 20.695 25.026 30.126  33.190 33.723  36.437 40.386 43.056 43.892 46.091 48.164
0.2 6.2722 10.347  12.502 15.003 16.430 16.787 18.034 19.994 21.126 21.509 22.795 23.184
0.3 41871  6.8953  8.2895 9.8007 10.422 11.104 11.546 11.983 12.639 12.888 13.393  13.593
0.4 3.1425  5.1645 6.1051  6.6470  7.2777  7.6737 7.9083 82749 8.5055 8.8403 89307 9.1656
0.5 2.5145 4.1096  4.5195 4.8977 54006 5.5063  6.0697 6.2325 6.3937 6.6995 6.7274  6.7770

1.5 0.1 11.565 15492 19.763 23.175 27.461 28.616 31.223 33.324 34.130 34925 37.882 39.722
0.2 57961  7.7483  9.8803 11.586 13.719 14.284 15.604 16.366 16.874 17.283 18.682 19.843
0.3 3.8702  5.1661  6.5700  7.7180  9.1121  9.4401 10.173  10.368  10.623  11.097 11.756  12.006
0.4 29052 3.8739 48955 5.7746  6.5427 6.6697 6.8533  7.2513  7.5265 7.6568  7.8021  7.9941
0.5 23251 3.0975 3.8601 4.5542 4.5694 4.8311 52776 53761 5.6124 5.7420 59377  5.9953

20 0.1 11.233 13369 17.073 18.622 23.604 24.809 26905 29332 30.241 30.490 33.271 34.269
0.2 5.6304  6.6896 85379  9.3115 11.795 12392 13.440 14.640 15.068 15221 16.323  16.991
0.3 3.7597 4.4619 5.6870 6.2022  7.8404 82244 89293 9.6584 9.8722 10.116 10.176  10.648
0.4 2.8224 33471 4.2554 4.6414 58056 6.0932  6.4985 6.6255 6.8747 6.9243  7.2265 7.5232
0.5 22589  2.6776  3.3880  3.6969 4.3968  4.5280 4.7822 48190 5.1471 53480 54090  5.4698

conclusions can also be drawn from Tables 3 and 4 for simply-supported plates. This means that for thin
plates, a larger number of lower natural frequencies are confined to the antisymmetric modes in the
thickness direction, i.e. AAA, ASA, SAA and SSA.

The effect of Poisson’s ratio on natural frequencies of clamped square thick plates with a thickness-side
ratio ¢/b = 0.5 has also been studied. Four different Poisson’s ratios v = 1/6; 1/4; 1/3; 2/5 were considered.
In Table 15, the first 12 frequency parameters Q of different mode categories are tabulated with respect to
the Poisson’s ratios. It is shown that the natural frequency of antisymmetric modes in the thickness di-
rection monotonically decreases with the increase in Poisson’s ratio. However, the variation of natural
frequency for the symmetric modes in the thickness direction does not display a monotonic trend.
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Table 13
Rectangular plates with four clamped edges: the first 12 frequency parameters 4 for the SSA mode
a/b t/b A A, A3 A4 A5 Ag 4, Asg Ay 4y Ay Aiy
1.0 0.1 3.3176 10488 10.587 16.044 20.897 20.949 25.070 25.229 32.662 32.688 32.742  36.021
0.2 2.7241 7.3208 7.4211 10.646 13.241 13.296 15.612 15.656 19.099 19.442 19.631 19.813
0.3 2.2146 54591 5.5380 7.7764  9.4057 9.5296 10.185 10.774 11.130 11.194 11.269 12.544
0.4 1.8321 43258 4.3857 6.0848  6.5653  7.0637 7.3753 7.5282 7.6821  8.4600 8.6153  8.7659
0.5 1.5488 3.5768  3.6226  4.8775 49781 5.2762  5.6733 6.0855 6.1052  6.4907 6.9964 7.0213
1.5 01 25399 5.8704 10.099 11.547 12.512 17.055 18.526  20.608 22.468 23.113  26.056 26.242
0.2 2.1459 4.5462  7.0947 8.1240  8.6268 11.310 12.137  13.088 14.171 14.669 16.177 16.301
0.3 1.7803 3.5660 5.3015  6.0805 6.4032 8.2577 8.7091 9.0781 9.3827 10.085 10.153  10.488
0.4 1.4931 2.8956 4.2048 4.8101 5.0493 5.6884 6.4511 6.6294 6.8490 69531 7.3384  7.5394
0.5 1.2742 2.4256  3.4775 39102 4.1053 4.2169 49087 5.1412 5.2906  5.5717 5.6562  6.0134
20 0.1 23231 4.0954  7.5332 99594 11.272 12.077 13.877 17.323 17.583  20.503 21.535 22.112
0.2 19735 33318  5.6969 7.0042 7.8617 8.5243 9.4844 11.561 11.660 13.026  13.638  14.188
0.3 1.6410 2.6982 44167 52351 5.8657 6.3877 7.0168 83223 8.5065 8.5614  9.3203  9.6822
04 13776 22318 3.5646 4.1530 4.6388 5.0143  5.2466 5.5288 6.3988  6.5497 6.6503  6.6678
0.5 1.1764 1.8899 29718 34315 3.6279 3.8570 4.1963 4.5413 4.7426  4.8655 5.1482  5.3641
Table 14
Rectangular plates with four clamped edges: the first 12 frequency parameters 4 for the SSS mode
d/b [/b Al Ag A3 A4 A5 Aé A7 Ag Ag AIO All A]g
1.0 0.1 20.624 23.562 25579 30.648 35.170 37.067 39.788 44.472 44.804 46.475 47.369 49.158
0.2 10319 11.712  12.768 15259 17.562 18.390 19.777 20.936 21.186  22.676  23.006 24.052
0.3 6.8672  7.6761  8.4610 99877 11.434 11.538 11.943 11983 12.698 13.077 13.094 13.346
0.4 5.1259  5.5215 6.2378  7.0392 7.4154 74897 7.7435 8.1926 8.5382 8.7877 8.8474 9.2916
0.5 4.0645 4.0736  4.7932  5.1273 52903 54721 57155 6.3347 63663 6.5609  6.9029  7.0701
1.5 0.1 15395 20937 22487 25032 28.052 30.210 32771 34260 34.998 38972 39.652 41.821
0.2 7.7010 10.454 11.222 12492 13965 14914 16335 17.075 17.400 19.301 19.631  20.604
0.3 5.1271  6.9398  7.4267 8.2737 9.1328  9.5494 10.693 11.171 11.263 11.626 11.673 11.934
0.4 3.8312  5.1412 54756  6.0972 6.2666 6.7644  7.2759  7.3375 7.4686  7.5632 7.8984  8.1424
0.5 3.0427 3.9563 4.2320 4.4822 4.7213 49580 5.1164 52285 53873 5.7507 59840  6.0359
20 0.1 12392 19.772  20.629 22.722 24313 24979 27451 30431 32814 33.075 33.486 35.884
0.2 6.2002 9.8870 10.305 11.314 12.091 12.459 13.688 15.133 16.267 16.380 16.710 17.751
0.3 4.1320 6.5846  6.8434 7.4471 79399 8.2389 9.0398 9.8564 10.104 10.807 11.033  11.330
0.4 3.0943 49227 50761 54083 5.7323 6.0499 6.4793 6.6955 7.0106 7.2861 7.3669  7.4345
0.5 24682 3.8884 39131 4.0559 43534 4.5282 4.7823 49254 5.0799 5.1748 5.3086  5.3566

5. Conclusions

The free vibration characteristics of thick rectangular plates, based on the linear, small-strain 3-D
elasticity theory, have been investigated. The Ritz method is applied to derive the eigenvalue equation. The
spatial displacement components in the three coordinate directions are described by admissible functions
comprising Chebyshev polynomials multiplied by the corresponding boundary functions. High accuracy,
stable numerical computation and rapid convergence have been observed in the analysis. For demon-
stration, the natural frequencies of rectangular plates of different aspect ratios, thickness-side ratios and
Poisson’s ratios with four clamped edges have been studied in detail. The method is also applicable to very
thin plates. The first 12 frequency parameters for various mode categories are given. These results can serve
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Table 15
Square plate with four clamped edges: the effect of Poisson’s ratio v on the frequency parameters
Modes v Ql .Qz Q} Q4 .Qs Qf, Q7 Qg .Qg QIO Q]l .le
AAA 1/6 49052 6.2253 6.9204 8.1049 8.2120 9.3422 9.5104 10.234 10.444 10.972 11.600 11.743
1/4 48143 6.0200 6.7720 7.9540 8.0388 9.0368 9.2003  9.9870 10.234 10.681 11.315 11.506
1/3 47371 5.8349 6.6602 7.8176 7.8823 8.7603 8.9215 9.7722 10.041 10.429 11.038 11.284
2/5  4.6839 5.6996 6.6001 7.7163 7.7669 8.5574 8.7184  9.6194 9.8973 10.254 10.826 11.115
AAS 1/6  4.6785 5.4950 7.1361 8.3844 8.5961 8.9356 9.0257 9.4589 9.5654 10.181 10.862 11.081

1/4 45276 54381 7.1507 8.1155 83507 8.7102 8.8691 9.1526 9.4814 10.000 10.696 11.202
1/3 43927 54084 7.2277 7.8721 8.1647 8.5036 8.7538  8.8682 9.3855 9.9672 10.515 10.993
2/5 42952 5.4027 7.3027 7.6934 8.0771 8.3538 8.6592  8.7054 9.2851 10.091 10.430 10.739

ASA (SAA) 1/6  3.7421 5.6429 6.4312 7.4386 7.7042 8.5925 9.1990 9.9116 10.028 10.502 11.267 11.297
1/4  3.6760 5.5178 6.3119 7.2886 7.4651 8.4206 9.0108 9.6851 9.7850 10.236 10.902 11.054
1/3  3.6218 5.4222 62072 7.1430 7.2615 8.2849 8.8393 9.4646 9.5757 10.009 10.563 10.836
2/5 3.5861 5.3697 6.1319 7.0195 7.1305 8.2010 8.7116 9.2964 9.4267 9.8516 10.314 10.674

ASS (SAS) 1/6  3.7294 6.4507 6.6921 7.4798 8.0487 8.4259 9.3143 9.3562 9.8448 10.080 10.388 10.532
1/4 37353 6.2492 6.7160 7.3591 8.0722 8.2745 9.1338  9.2793 9.6523 10.152 10.187 10.213
113 3.7756 6.0658 6.7723 7.3022 8.0391 8.2055 9.0395 9.3582 9.4901 9.9167 9.9586 10.090
2/5 38375 59319 6.7963 7.3311 7.9704 8.1647 9.0297 9.3387 9.4575 9.7547 9.9775 10.187

SSA 1/6 23733 5.4749 55607 7.4992 7.6556 8.0689 8.8348 9.3840 9.4353 10.018 10.785 10.858
1/4 23330 5.3872 54624 7.3553 7.5121 7.9407 8.5968  9.1937 9.2306 9.8045 10.570 10.618
1/3 23012 5.3132 53770 7.2417 7.3847 7.8446 8.3968 9.0198 9.0448 9.6249 10.370 10.400
2/5 22817 52619 53163 7.1696 7.2917 7.7913 8.2650  8.8898 8.9072 9.5038 10.219 10.239

SSS 1/6  6.1500 6.2070 7.0981 7.3651 7.5861 7.9608 8.7051 9.3986 9.7643 9.9696 10.686 11.016
1/4  6.0995 6.1248 7.2479 7.4324 7.7125 8.0188 8.5533  9.4600 9.5676 9.8359 10.443 10.727
1/3  6.0496 6.0592 7.0935 7.7863 8.0721 8.3183 8.6043 9.3928 9.5395 9.8010 10.219 10.459
2/5  6.0086 6.0192 6.9623 7.8935 8.5104 8.6610 8.9854 9.2719 9.6286 10.035 10.058 10.288

as benchmark solutions for validating approximate two-dimensional theories and new computational
techniques in future.
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